IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 7, JULY 1986 767

Asymmetrical Three-Line Coupled Striplines
with Anisotropic Substrates

TOSHIHIDE KITAZAWA, MEMBER; IEEE, AND YOSHIO HAYASHI

Abstract — Analytical methods are presented for the general structure of
three-line coupled striplines with anisotropic media for the first time. Two
approaches are included; one gives variational expressions for the quasi-
static parameters of the cases with the uniaxially anisotropic substrates cut
with their planar surface at an arbitrary angle to the optical axis, the other
gives the rigorous hybrid-mode formulation for the cases with the uniaxi-
ally anisotropic substrates cut with their surface perpendicular to the
optical axis. Accurate numerical results are presented for the propagation
constants as well as the characteristic impedances of various types of
three-line coupled striplines with anisotropic media.

I. INTRODUCTION

ROPAGATION characteristics of various types of two

coupled striplines have been investigated by many
authors [1]-[8]. The simple structure of coupled micro-
strips has generally unequal phase velocities, which cause
poor coupler isolation. Several attempts have been made to
equalize the phase velocities including the use of an aniso-
tropic substrate [4] and the modification of the structure
[6], e.g., coupled suspended strips and coupled overlaid
strips. Recently, three-line coupled stripline configurations
[9]-[15] were introduced for filter and coupler appli-
cations. Asymmetrical versions of three-line coupled
striplines [11] are especially promising because of the
additional flexibilities offered by the asymmetrical config-
uration and the impedance transform nature. An analytical
method of asymmetrical three-line coupled striplines [11]
was presented by extending the procedure of two-line
coupled lines. However, it dealt with the microstrip struc-
ture on an isotropic substrate only and presented results
for the propagation constants only. At the present time,
there is no analytical method applicable to the various
types of three-line coupled striplines with anisotropic sub-
strates and no information about the characteristic imped-
ances of asymmetrical three-line coupled striplines. This
paper presents two analytical approaches for the general
structure of three-line coupled striplines with anisotropic
media (Fig. 1), which includes three-line coupled micro-
strips, suspended strips, and strips with an overlay. One
approach is based on the quasistatic formulation and is
applicable to the cases with the uniaxially anisotropic
substrates cut with their planar surface at an arbitrary
angle to the optical axis. The other, based on the hybrid-
mode formulation, gives the rigorous frequency-dependent
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Fig. 1. General structure of asymmetrical three-line coupled striplines

with anisotropic substrates.

solutions for the cases with the uniaxially anisotropic
substrate cut with its surface perpendicular to the optical
axis.

The quasistatic characteristics of three-line coupled lines
can be described in general by three propagation constants
and nine characteristic impedances because of three funda-
mental modes of propagation (Section II-A). Section II-A
shows how these propagation parameters can be expressed
in terms of the line constants. The variational expressions
for the line constants, in turn, are derived in Section II-B.
The rigorous hybrid-mode formulation of Section III is an
extended version of that for the two-line coupled lines case
and is outlined briefly. Numerical examples are presented
for the propagation constants as well as the characteristic
impedances of various types of three-line coupled strip-
lines in Section IV. Propagation characteristics of the
three-line coupled striplines with anisotropic media are
presented for the first time.

II. QuUASISTATIC CHARACTERISTICS

A. Three Conductor Transmission-Line Analysis

The basic equations for three conductor TEM transmis-
sion lines can be expressed in general as follows:

av, 2
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where V; and I, are the voltages and currents on the ith
conductor, and z/;, y}; are self impedances and self admit-
tances per unit length of lines, and z;,, y/ (i# ) are
mutual impedances and mutual admittances per unit

length, respectively. For lossless lines with uniaxially an-
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isotropic media, one has
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Y=Y, = 2)
where L, and C, are the self inductances and self capaci-
tances per unit length, and L; and C,, (i# j) are the
mutual inductances and capacitances per unit length, re-
spectively. Eliminating the currents I, from (1), we obtain
a set of differential equations for voltages V; only

JjwC,,

daw, ,

Z{*thl—tQI/z"tBIG:O (1=1,2,3) (3)
where

ty=zhytzhysit ey, (,7=1,2,3). (4)

Assuming a z-variation of the form V(z) = V,,e 7 for the
voltages, the differential equations (3) reduce to the follow-
ing eigenvalue equation:

B> +1y, Iy I3 Vio
Iy B*+1y I3 Vi [=0.  (5)
I3 I3 B+t || Vao

For (5) to yield nontrivial solutions, the determinant of the
coefficient matrix must be zero, that is,

Bé+aB*+bB8%+c=0 (6)
where
a=tytiy + 13,
b=ty 1y +tytsy+ sty = oty — Iyls — Iyl
c=lplnty Hinlnhy+ininly
(7
Equation (6) is the determinantal equation for 8, and it
gives six roots

= tiplalss — tyslatyy — afialn.

B=1B, 18£8 (8)

The general solutions for the voltage on line / can be
written as

V,= R, (A,e/% + Bie P17)

+ R (A eP2% + ByeIP27)

+ R3(Age®? + ByeP2)  (i=1,2,3) (9)
where A4,, B, are constants, and R, are ratios of the

voltages V, and V| for the mode k

R V.
17 V]

for f=8, (k=1,2,3).

(10)

The currents I, are obtained by substituting (9) into (1)
I, =Y, R, (A" + BjeF?)
+Y,R,,( 4,07 + ByeF2%)
+Y,;R;5( Aze7P5% + ByeBs*) (11)

where Y,, is the characteristic admittance of line i for
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mode k and it is given by
_‘Blc_ . lezlk + RZkZZk + R2kz3k

ik = = (12)
R |Z]
where Z, is a cofactor of the impedance matrix Z
’ ’ ’
Zu %z I3
= 4
Z=|21p 23 Iy (13)
’ ’ 4
Zy3 Z3 Zm

and |Z| is the determinant of the impedance matrix.

B. Variational Expressions for the Quasistatic Parameters

According to the preceding discussion, the quasistatic
characteristics, that is, the phase constants 8, and char-
acteristic impedances Z,,=1/Y, of three-line coupled
striplines shown in Fig. 1, can be described in terms of
inductances L,; and capacitances C,, (egs. (6) and (12)),
where L, are obtained by using the self and mutual
capacitances C,; of the case without substrates. The capa-
citances are defined as

0 Cu Cp Cis "
Qz = C12 sz C23 Vz (14)
Qs Cis Gy CullW

where Q, is the total charge on the strip i. However, to
authors’ knowledge, the expressions of the elements of this
capacitance matrix C,, have not been presented for any
type of three-line coupled lines. In the following, the
compliance matrix, the inverse matrix of the capacitance
matrix, is introduced, and the variational expressions for
the matrix elements are derived for the general structure of
the asymmetrical three-line coupled striplines with uniaxi-
ally anisotropic media (Fig. 1). The tensor permittivities of
the layered anisotropic media are given as

= €ixx €ixy
&=, e leo  (1=1,2,3).

ixy iyy

(15)

The potential distribution at the strip plane can be
obtained by using the extended version of the method in

[8]
o(x) =f—wwj(;wG(a; x1x")o(x’)dadx’  (16)

where o(x) is the charge distribution on the strips and

Gla; Y= F —
(a; x]x*) e (a)cosa(x—x") (17)
F(a) . 18
“= e.coth( pidia)+ ¢, L (18)
I €5, €5, c0th( p,d,a)coth( pyd,a) (19)
€,.coth( p,d,a)+ €;, coth ( pydsa)
€e™ Etxxezyy - E12xy
2
€ixx €ix

pm (22 20

eU’y €’)’y



KITAZAWA AND HAYASHI: ASYMMETRICAL THREE-LINE COUPLED STRIPLINES

¢(x) should be constant over the strip conductors
¢(x)=V, (i=1,2,3). (21)

We will derive the variational expressions for the ele-
ments of the compliance matrix, which is defined as

4 Dy, Dy Dyl O

Val=|Dn Dy Dyl| Q). (22)

V3 D13 D23 D33 Q3
We consider the following sets of excitations:
i) Q,#0, 0,=03;=0 (23a)
ii) Q,#0, 0;=0,=0 (23b)
iit) 0,#0, 0,=0,=0 (23c)
iv) 0,=0,#0, ;=0 (23d)
v) 0,=0,+#0, 0,=0 (23e)
vi) 0,=0,#0, Q,=0. (23f)

From (16), (21), and (23a), we obtain
V0 =V, [ o(x)ax
W,

1

= fwlf_wwfowo(x)G(a; x|x")o(x’) dadx’dx (24a)
0=7, szo(x) dx

= f%f_oowfowo(x)G(a; x|x")o(x’) dadx’ dx (24b)
0=7, j%o(x) dx

=/ fw fooo(x)G(a§x|X')0(x’)dadx’dx (24¢)
WY —o00v0
by utilizing
| Q1=f o(x)dx+0
m

Q,=fWo(x)dx=0 (i=2,3). (25)

Therefore, we get

v
Dy, = _Q—l

0,=0;=0

=ff_ww0(x)G(a; x|x")o(x’) dadx’dx/Qf. (26)

Similar expressions for Dy,, Dy;, Dy; +2D;, + D,y, Dyy +
2Dy3+ Dy, and Dy +2Di,+ Dy, can be obtained by
using (23b), (23c), (23d), (23¢), and (23f), respectively. It
can be shown easily that (26) has a stationary property and
it gives an upper bound to the exact value.

11I.

Frequency-dependent hybrid-mode solutions are avail-
able for the cases of isotropic and/or uniaxially aniso-
tropic substrates cut with their planar surface perpendicu-
lar to the optical axis. The method of solution is a

HYBRID-MODE ANALYSIS
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Fig. 2. Dispersion characteristics of three-line coupled microstrips. ¢; ..
=€y, =1 €., =94, €, =116, ¢,,, =0 (i=1,2,3), d; > o0, d;,y,

s Sixy
=1, dy=0, Wiy, =15, Wy, =20, S ,u,=10, S, =05

———: hybrid-mode, — - —: quasi-static.

straightforward extension of that in [8] and no approxima-
tions for simplification are used in the formulation proce-
dure.

The rigorous expression of the electric field for the
general structure of three-line coupled striplines with an-
isotropic media can be obtained as

E(x,y,2) = -L,fylf(x;ylx’,y’)

G(x)8(y + d,) dy’dx’e™P*  (27)

where i (x) and B are the unknown current density on the
strips and the propagation_constant, respectively, and
the dyadic Green’s function Z is obtained by utilizing the
procedure in [8]. Applying the boundary condition at the
strip conductors leads to the integral equation for 7(x) and
implicitly 8. Galerkin’s procedure is applied to the integral
equation for numerical computations. For the symmetrical
structures [6}, the even and odd modes can be treated
separately, which results in two separate determinantal
equations, whereas the present formulation does not utilize
any symmetrical property, treats all the propagation modes
simultaneously and gives a single determinantal equation.
The frequency-dependent hybrid-mode solutions for prop-
agation constants and characteristic impedances are pre-
sented in the next section.

IV. NuMERICAL EXAMPLES

The Ritz procedure is applied to the variational expres-
sions of the quasistatic parameters obtained in Section II
for the numerical computation, whereas Galerkin’s proce-
dure is used in the frequency-dependent hybrid-mode
calculations. In both procedures, the unknown quantities
involved are expanded in terms of the appropriate basis
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Fig. 3. Dispersion characteristics of three-line coupled suspended strips.

e =€ =1 (i=1,3), €, =94, 5, =116, ¢,,, =0 (i=1,2,3), d
dryw, =1, dyy, =01, Wiy, =15, Wiy, =20,8,,,=10,
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Fig. 4. Dispersion characteristics of three-line coupled overlaid strips.
€, =94, 6,, =116, ¢, = €2, =16, 5, =¢;,,=1.0, €xp=0 (1=
1,2,3), dy,pu,=1, 43w, =05, dy — oo, Wi w, =15, Wy, =20,
81w, =10, 8y, = 0.5. ——: hybrid-mode, —- — quasi-static.

functions which are similar to those used in [8] and take
the edge effect into consideration. Some preliminary com-
putations showed that three basis functions for the quasi-
static and two basis functions for the frequency-dependent
solutions are sufficient in most cases.

Figs. 2-4 show the effective dielectric constants for
different types of three-line coupled striplines with uniaxi-
ally anisotropic substrates cut with their planar surface
perpendicular to the optical axis. There are three funda-
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Fig. 5. (a) Characteristic impedances for modes 1 and 3. Dimensions

are same as in Fig. 2. (b) Characteristic impedances for mode 2.
Dimensions are same as in Fig, 2.

mental modes of propagation, and the frequency-depen-
dent hybrid-mode values of the modes converge to the
corresponding quasistatic values in lower frequency ranges,
which display the accuracy of the computations. We men-
tion that the phase velocities of different modes of three-
line coupled suspended striplines have very close values at
some frequency but they never coincide, i. e., there is a
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Fig. 6. Effective dielectric constants of three-line coupled microstrips

versus . €., =€, =1, €,, =0, €, =340, ezyy—512 €25, =0
when y=0, dj—~'0, dyyy,=1, d3=0, W, =15 w, = 2.0,
Si/w,=1.0, 8, = 0.5.

small gap between the dispersion curves because of the
mode coupling. Examining the voltages and currents of
each mode of the three-line coupled microstrips shows that
modes 1, 2, and 3 of our theory become the EE-, OE-, and
OO-modes in the symmetrical case [9],[16]. Thetefore,
modes 1, 2, and 3 of the microstrip case (Fig. 2) could be
referred as the cc-, 7c-, and wo-modes, respectively. How-
ever, for the asymmetrical three-line coupled suspended
lines and overlaid configurations considered in Figs. 3 and
4, the modes of propagations cannot be identified for a
wide range of frequencies because of the mode coupling,
e.g., the lowest dispersion curve of Fig. 3 is similar to that
of mode 2 of the microstrip case in lower frequencies, but
it is similar to that of mode 3 at higher frequencies.
Therefore, mode numbers are not assigned in Figs. 3 and
4. Fig. 5 shows the characteristic impedance of three-line
coupled microstrips. The definition for the characteristic
impedance is not uniquely specified for the hybrid-mode
propagation. The definition chosen here is

Vic

=— 28
=T (28)
where V,, and I, are the voltage at the center of the strip i
and the total current on the strip i/ for the mode £k,
respectively. Again, the frequency-dependent values of the
characteristic impedances converge to the quasistatic val-
ues in lower frequency ranges. For the symmetrical case,
the voltage of strip 2 for mode 2 (the OE-mode), v,,, is
always zero. On the contrary, for the asymmetrical case
considered here, the voltage V,, becomes zero only at
some frequency. Therefore, at the frequency the character-
istic impedance of strip 2 for mode 2, Z,,, becomes zero

(Fig. 5(b)).
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Fig. 6 shows the effective dielectric constants e, of
asymmetrical three-line coupled microstrips on a uniaxi-
ally anisotropic substrate cut with its surface at y to the
optical axis.

V. CONCLUSIONS

Two analytical approaches are presented for the general
structure of three-line coupled striplines with anisotropic
media; one gives variational expressions for the quasistatic
parameters, the other gives the rigorous hybrid-mode for-
mulation for the various types of three-line coupled strip-
lines. Accurate numerical computations based on the
quasistatic and the frequency-dependent formulation are
presented for the progagation constants as well as the
characteristic impedances of the cases with anisotropic
media, for the first time.
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